污水處理設備
3 ABR的研究現狀及應用前景
目前關于ABR反應器的研究尚處于實驗室階段。英國的一些研究機構在反應器的工藝特性方面做了較多的研究。
ABR的工藝特性與其水力特性緊密相關。對于ABR的水力學特性,A.Grobicki、D.C.Stuckey[3]和天津大學的郭靜[10]研究表明:ABR反應器在沒有回流和攪拌的條件下,混合效果良好,死區百分率低。反應死區可以分為生物死區和水力死區,生物死區來源于污泥所占的體積以及污泥對水力條件的改變;水力死區則可通過改善反應器構造設計而減小。在單個反應室內,水力特性接近于完全混合式,而從整體效果上看,則近似于推流式。由于ABR的水力特性較復雜,二者均未能就其流態提出一個較好的數學模型。其水力死區的計算借用了化學反應工程中反應器的流態模型,其合理性尚待進一步考證。關于ABR的工藝特性研究,最早是由A.Bachman和P.L.McCarty等人[2]所做。
據介紹,ABR反應器運行時污泥床層(常為顆粒污泥)處于流化狀態,廢水中基質的降解和微生物代謝產物的排除均須經由顆粒污泥表面通過擴散作用完成。試驗中ABR的負荷可高達36 gCOD/L。此外W.P.Barber和D.C.Stuckey[5]研究了ABR的啟動特性,結果表明,固定進水基質濃度而逐步縮短HRT的啟動方式優于固定HRT而逐漸增大進水基質濃度的啟動方式。另外,ABR對水力負荷沖擊響應迅速但恢復卻快于濃度負荷沖擊。在高水力負荷條件下,反應器內的短流現象是造成污泥流失的主要原因。A.Grobicki和D.C.Stuckey[6]研究了以葡萄糖為基質的ABR在穩定狀態和沖擊負荷情況下的運行特性,系統分析了酸化過程以及甲酸、乙酸、丙酸、丁酸等中間產物在不同運行狀態下沿流程的分布積累狀況。與其它反應器在沖擊負荷條件下不同的是,ABR中甲酸并非是很重要的電子受體。此外,無論是在水力或是在濃度負荷沖擊下,ABR均表現出良好的穩定性能,因此有可能適用于工業廢水處理。S.Nachaiyasit[7]研究了低溫對ABR性能的影響,結果表明在中等負荷條件下,反應器溫度由35 ℃降至25 ℃對COD去除率無明顯影響,當溫度進一步降至15 ℃時,反應器的效率明顯下降,主要原因是低溫降低了細菌的代謝速率,使VFAs的半飽和降解常數Ks增大,同時可溶性細胞代謝產物增加。此外沼氣產量減少也降低了基質與微生物的接觸效率,但通過合理調整工藝設計,可明顯減小低溫對厭氧過程的負作用。T.Setiadi等人研究了出水回流對反應器的影響,著重強調了回流比與系統中堿度及pH之間的關系。
此外,復合式(Hybrid)厭氧反應器,即在反應器內的適當部位增設填料也是目前的一個研究方向。復合式ABR(HABR)一般在反應器內各反應室的上部空間架設填料,一方面利用原有的無效容積增加生物總量,更重要的是由于填料的存在,夾帶污泥的氣泡在上升過程中與之發生碰撞,加速了污泥與氣泡的分離,從而降低了污泥的流失。
如前所述,ABR的推流特性使其在處理對細菌有抑制或毒性的物質時具有潛在的優勢,關于這方面的實驗室研究目前剛剛起步。C.J.Holt等人[8]利用ABR與HABR處理含酚廢水,二者都取得很好的效果,其中HABR在進水酚濃度為1 192mg/L(COD)時的去除率為95%。同濟大學的雷中方等[9]試驗了用ABR處理堿法草漿黑液的可能性。清華大學的戴友芝也正在進行利用ABR降解劇毒物質氯酚的可行性研究,目前實驗結果已相當不錯。